

PROGRAM AND COURSE OUTCOMES

DEPARTMENT OF MATHEMATICS

WMO Arts & Science College, Muttil

Kalpetta, Wayanad, Kerala 673122 Phone:04936-203382 E-mail: <u>info@wmocollege.ac.in</u> <u>www.wmocollege.ac.in</u>

MSc MATHEMATICS

Course Outcomes

Semester	Course	Course outcomes
1	MTH1CO1: ALGEBRA - I	Learn factor group computation.
		• Understand the notion of group action on a set.
		• Understand the notion of free groups.
		• Understand the concepts rings of polynomials and
		ideals.
		• Learn basic properties of field extensions.
1	MTH1CO2: LINEAR	Learn basic properties of vector spaces
	ALGEBRA	• Understand the relation between linear
		transformations and matrices
		• Understand the concept of diagonalizable and
		triangulable operators and various fundamental
		results of these operators
		Understand Primary decomposition Theorem.
		Learn basic properties inner product spaces
1	MTH1C03: REAL	• Learn the topology of the real line
	ANALYSIS I	• Understand the notions of Continuity, Differentiation
		and
		• Integration of real functions.
		• Learn Uniform convergence of sequence of
		functions, equicontinuity of family of functions, and
		Weierstrass theorems.
1	MTH1C04: DISCRETE	Understand the fundamentals of Graphs
	MATHEMATICS	• Learn the structure of graphs and familiarize the
		basic concepts used to analyse different problems in
		different branches in different areas
		• Acquire a basic knowledge of formal languages,
		grammars and automata.
		• Learn the equivalence of deterministic and non

		deterministic finite accepters.
		*
		• Learn the concepts of partial order relation and total
		order relation.
		• Acquire knowledge of Boolean algebras and Boolean
		function and understand how these concepts arise in
		certain real-life problems.
1.	MTH1CO5: NUMBER	• Be able to effectively express the concepts and
	THEORY	results of number theory.
		• Learn basic theory of arithmetical functions and
		Dirichlet multiplication averages of some
		arithmetical functions.
		• Understand distribution of prime numbers and prime
		number theorem.
		• Learn the concept of quadratic residue and Quadratic
		reciprocity laws.
		• Get a basic knowledge in Cryptography
2.	MTH2 C06 ALGEBRA - II	• Be able to apply Sylow's theorem effectively in
		various contexts.
		• Learn automorphisms of fields.
		• Get a basic knowledge in Galois Theory.
		• Learn how to apply Galois Theory in various
		contexts.
2	MTH2 C07- REAL	• Learn why and for what the theory of measure was
	ANALYSIS- 11	introduced
		• Learn the concept of measures and measurable
		functions
		• Learn Lebesgue integration and its various properties
		• Learn how to generalize the concept of measure
		theory.
		• Learn that a measure may take negative values.
2	MT2 C08 -TOPOLOGY	Understand topological spaces
		 Understand continuous functions among topological
		spaces and quotient spaces
		spuees and quotient spuees

		• Understand the concept of separation axioms
		• Understand Urysohn characterisation of normality
2	MTH2C09 - ODE AND CALCULUS OF VARIATIONS	 Interpret and analyse Power Series Solutions and Special functions Understand Systems of First Order Equations; Non linear Equations Understand and analyse the Existence and Uniqueness of Solutions Identify critical points of a given system
2	MTH2C10-OPERATIONS RESEARCH	 Apply the method of minimum spanning tree in solving minimum path problems Apply Simplex method or Dual Simplex Method to solve linear programming problems Apply the method of minimum spanning tree in solving minimum path problems Apply Simplex method or Dual Simplex Method to solve linear programming problems
3	MTH3C11- MULTIVARIABLE CALCULUS AND GEOMETRY	 Understand the concept of functions of several variables, the concept of their differentiation and linear transformation Understand the concept of curve and their properties. Find curvature and torsion of curves. Understand the concept of surfaces and their Properties
3	MTH3C12 -COMPLEX ANALYSIS	 Understand Conformality, Linear Transformations, Elementary Conformal Mappings, Fundamental Theorems Understand Cauchy's Integral Formula, Local Properties of Analytic Functions, The General Form of Cauchy's Theorem, Calculus of Residues Analyse Harmonic functions, Power series Expansions, Maximum principle. Be thorough in power series representation of

		analytic functions, different versions of Cauchy's
		Theorem.
		• Get an idea of singularities of analytic functions and
		their classifications.
		Learn different versions of maximum modulus
		theorem
3	MTH3C13 - FUNTIONAL	Learn the concept of normed linear spaces and
	ANALYSIS	various properties operators defined on them
		Understand Metric spaces and Continuous Functions
		Analyze Inner product spaces
		Analyze Banach spaces
3	MTH3C14 - PDE AND	Learn a technique to solve first order PDE and
	INTEGRAL EQUATIONS	analyse the solution to get information about the
		parameters involved in the model.
		 Learn explicit representations of solutions of three
		important classes of PDE Heat equations
		• Laplace equation and wave equation for initial value
		problems.
		• Define first order differntial equations and solve
		quasilinear equations.
		 Discuss characteristics method and Lagrange
		method.
		• Define second order differential equations and
		canonical form of hyperbolic, parabolic and
		elliptical equation.
		 Discuss The Cauchy problem and D'Alemberts
		formula, Domain of dependence and region of
		influence.
		• Discuss Heat equation: homogeneous boundary
		condition, Separation of variables for the wave
		equation and basic properties of elliptic problems.
		• Define Integral equations and discuss Relations
		between differential and integral equations, the

		Green's functions, Fredholom equations with
		separable kernels, Hilbert- Schmidt Theory, The
		Newmann Series, Fredholm Theory.
		• Learn the relation between Integral and differential
		Equations
3	MTH3E01- CODING	Learn about error detection
	THEORY	• Learn about correcting codes and linear codes
		• Understand error correcting BCH codes
4	MTH4C15- ADVANCED	• Understand the concept of spectrum and their
	FUNCTIONAL ANALYSIS	properties, compact operators and self adjoint
		operators.
		• Understand the properties of orderings.
		• Study the fundamental theorems and basic results
4	MTH4C11-GRAPH	• Describe basic concepts of Graph Theory.
	THEORY	• Define Trees, Cut edges and Bonds, Cut vertices and
		discuss The Connector Problem, Connectivity,
		Blocks, Construction of Reliable Communication
		Networks, Euler Tours, Hamilton Cycles, The
		Chinese Postman Problem, and The Travelling
		Salesman Problem.
		• Explain independent sets and covering sets and some
		basic theorems.
		• Discuss Matchings, Matchings and Coverings in
		Bipartite Graphs, Perfect Matchings, the Per-sonnel
		Assignment Problem, Edge Chromatic Number,
		Vizings Theorem, The Timetabling Problem,
		Independent Sets, Ramseys Theorem.
		• Define Vertex Colouring and Chromatic Number.
		Discuss Brooks Theorem, Chromatic Polynomial,
		Girth and Chromatic Number, A Storage Problem
		• Define Plane and Planar Graphs, Dual Graphs and
		discuss Euler's Formula, Bridges, Kuratowskis
		Theorem, The Five-Colour Theorem, Directed

		Graphs, Directed Paths, Directed Cycles
4	MT4E09 - DIFFERENTIAL GEOMETRY	 Analyze vector fields on surfaces Understand Geodesics and parallel transport Understand the concept of curvature and use this to find Arc length and line integrals. Understand local equivalence of surfaces and
		parametrized surfaces
4	MTH4E08 – COMMUTATIVE ALGEBRA	 Learn basic properties of commutative rings, ideals and modules over commutative rings Learn uniqueness theorem for a decomposable ideal. Learn integrally closed domain and valuation ring. Understand the basic theory of Noetherian and Artin Rings